If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-10x+2=0
a = 11; b = -10; c = +2;
Δ = b2-4ac
Δ = -102-4·11·2
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{3}}{2*11}=\frac{10-2\sqrt{3}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{3}}{2*11}=\frac{10+2\sqrt{3}}{22} $
| 5x/2-3=3x+8 | | a^2=25/121 | | 3(4x+1)+3x=2x-23 | | 5(3x-1)-6=4 | | (3x-7)+4=14 | | 7x+1-2(4-x)=12x-8 | | -3(5u-4)+6u=5(u+4) | | 1,024=h^2 | | -3x-2(7x-4)=2(x+4) | | -6x-13=-7x-14 | | 8x-17-2x=10x-19 | | (4y)-16)+32/2)=0 | | 9(n+3)=7-3 | | 5x=8+3(2x+3) | | 5x–2=7x+10 | | 13x-20+7x=180 | | 4x+3+4x+3=12x | | -6x-13=-7х-14 | | 4x+1=3x=5 | | -6(3-5n)+8(2n-2)=-80 | | Y=33,2x+75,2 | | 2m+8=5m-4 | | 7x+8+3x-2=76 | | 9x-11+5x+2=10x+7 | | 13-3x=3x-13 | | -2(1-6x)-4(3x-1)=1 | | X2+4x=140 | | 4t-t=14 | | -(n-3)=-(n+6)+3n | | 1/7(7y+28)-6=-1/3(6y-21) | | 4x−2+x=2x+8+3x | | 3y=2(2y+2) |